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This article considers the problem of estimating the delay difference and doppler
frequency difference for the arrival of a white noise signal from a distant Quasar
at two widely separated receiving stations on Earth. The nonlinear Barankin
bound is reviewed as it applies to the very long baseline interferometry (VLBI)
problem, and used to evaluate the signal-to-noise ratio threshold for VLBI Esti-
mates. We conclude by comparing the performance of several sampling strategies

for VLBI data.

l. Introduction

This article considers the problem of estimating the
delay difference and doppler frequency difference for the
arrival of a white noise signal from a distant Quasar at
two widely separated receiving stations on Earth, At both
receiving stations, the signal is corrupted by additive
white Gaussian noise, and further, by filtering, and per-
haps other processing. This additive noise is statistically
independent of the signal, and the noises at the two
stations are independent of each other. OQur parameter
estimator is that parameter transformation which maxi-
mizes the cross correlation between the corrupted signals
received at the twe stations. If the signal-to-noise ratio
(SNR) in this estimator is sufficiently high, the maximiz-
ing parameters are well-defined, and the calculation of
estimator variance is quasi-linear. As the estimator SNR
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decreases, the problem becomes distinctly nonlinear, and
bounds or approximations are required. The SNR at
which the nonlinear effects become important is called
the threshold of the system.

The bounds derived by Barankin (Ref. 1) for estimation
error under a wide variety of conditions apply here.
These bounds include the quasi-linear Cramer-Rao bound
as a special case. Swerling (Ref. 2) has applied the
Barankin bounds to the variance of the estimate of time
delay and doppler shift for a radar signal, and McAulay
and Seidman (Ref. 3) have applied it to a threshold
analysis for pulse-position modulation, The VLBI prob-
lem can be transformed in a systematic way to the
problem of estimating the parameters of a “known” wide-
band Gaussian signal in wideband Gaussian noise, so that
much of this above-cited work can be directly applied.

67



Il. The Barankin Bound

For the approximate application of the Barankin bound
to the VLBI problem, it is convenient to follow the nota-
tion and arguments of Swerling (Ref. 2). A more rigorous
and exact formulation could be built from the formula-
tions used by Barankin (Ref. 1) or Kiefer (Ref. 4).

Let {F(t,£)} be a family of real-valued functions of
time ¢ and defining parameter vector §. We wish to esti-
mate some of the components of ¢ by observing functions
Z(t) over T, <t < T, where

Z(t) = F(t,€) + x(t) @

and where x(¢) is a real-valued Gaussian random process
with zero-mean and covariance function y.(s,t). Given
appropriate conditions, x(f) can be expanded in the
Karhunen-Loueve Series

o0

— ¢; 2
;\/x» @

where the x; are independent, zero-mean, unit-variance
Gaussian random variables, and x;, ¢i(t) are the eigen-
values and orthonormal eigenfunctions of the integral
equations

9= x / " gl 1) ol0) d @)

We further suppose that for all £, we can express

Ft.§) =2 8:0)" 64 0

over the observation interval, where

8ie) = / " Fit, &) ¢a(t) de (5)

Barankin’s result for the greatest lower bound to the
variance of any estimator for £ is

[é (& — &) ak:r

o’ _>_ K K (6)
kEZ G(&, £/ &) * may
=1 =1

where & is the true parameter value, K is any finite
integer, the & are alternate parameter values, and the a;
are arbitrary real numbers. In the above notation, the
function G(*, +|*) is defined by
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e, &4 = exp{ilx,- [8:(&) — Bi(&)][8:(&") — Bi(so)l}
(7)

This bound may be made arbitrarily tight by appropriate
choices of K and {ay, &}.

The Cramer-Rao bound can be derived from Eq. (6) by
taking a limit as two of the & smoothly approach each
other at &, and their corresponding a; grow equally and
oppositely to infinity. The resulting zeroth-index deriva-
tive term can be included in the bound (6) as (Ref. 3)

[ + Z ak(fl,c fo):l
o? > mgat (8)
Z Z axay dy
k=0 1=0
where
o 0

doo af’ f” f 5 Ifo ‘5 =¢"’
0

doe = dyo = E?G(f', & &) e =g ket

dk,! = G(éllc, f”|£0)|k,16[1.1f] (9)

Equation 8 is the Cramer-Rao Bound if a; = 0, for all
i > 0. Continuing to follow Ref. 3, let A denote the
column vector of the a;, and N denote the column vector
of the n; defined by n, =1, n; = & — & for ie[1,K]. If
D denotes the matrix of {dy|k, 2€0, K}, then the bound
may be rewritten as

o > A'NN'A/A'DA (10)

The right-hand-side of Eq. (10) is maximized by letting
A = AD'N, for any A, so that the greatest lower bound
on the variance is

o? > N'D-'N (11)

We will apply this form of the Barankin Bound to the
VLBI estimation problem.

lIl. Very Long Baseline Interferometry
Detection and Parameter Estimation
Figure 1 shows an overview of the features of the VLBI
problem. The white noise signal from the radio star is

received at the two stations with some relative delay and
doppler offset which can be related to Earth’s rotational
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position and velocity. Local ambient noise, usually much
stronger than the radio-star signal, is added at each re-
ceiver, and the resultant is filtered, translated by a local
oscillator to a manageable frequency and bandwidth,
and then sampled, hard-clipped, and recorded. The re-
corded signals arc then brought together at leisure, modi-
fied by an a priori estimate of the relative delay and
doppler, and cross-correlated. Refined estimates of the
delay and doppler are extracted from this cross-correlation.

The input to the cross-correlator from statlon 1
may be denoted as x;., = Sign {S(j + k, f) +n,(j + k, f
and the input from station 2 may be denoted
y; = Sign {S*(j + d,f.) + n.(j,f,)}. Here S*(-,*) is the
naturally delayed and doppler-shifted version of S(,°),
and k énd/f\are our a priori estimates of this delay and
doppler, respectively. Because of their origins as white
noise, and subsequent filtering, S(v,*) and n,(*,*) have
identical autocorrelation functions, as do S$*(-,+), and
n.(*, *). The cross-correlation

Z(k,f) = Zrhk Yi (12)

is evaluated as a function of k and f near its maximum.
The final estimate of the actual delay and doppler is made
much finer than the integral steps in k.

Let us denote by T,, and T,. the noise temperatures of
the environment at stations 1 and 2, respectively, and by
T, and T, the increment to these noise temperatures
caused by the radio-star “signal” at the two stations. T,
and T, may differ as a result of differing antenna collect-
ing areas, efficiencies, etc. Denote as r; and m; the signal
and noise terms respectively in x;, and as 7; and m} the
signal and noise terms in y;. By definition of the hard
limiting, the average values of (r; + m;)? = (x;)2 =1 and
(5 +mj)* = (y;)* = 1. Furthermore, E,{(E,{r; + m;})?} =
(2/7") (Tsl/Tnl)> and EV{(Em{r; + m;})z} = (2/77) (Tsz/Tn2)>
where E. denotes expected value over the distribution of
the random variable o, and where we assume T,; « Th;.

Because the number of samples in the summation (12)
is large, Z(,*) will be approximately Gaussian (by the

central limit theorem), and its distribution specified by its
first two moments. The first moment is

]
Zerk'r?

=N-

2 Ty Tg A
; Tm * Tnz ¢(k - d’f - fO) (13)
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where N is the number of samples, and ¢(-,*) is the
normalized autocorrelation (ambiguity) function for the
filtered signal process.

The second moment is

Z(k,f) - Z(1, g) =
Z Z [Ti+k + mj+k] [1’; + m;'][rid + mi+!] [T’, + m:]}

(14)
If we expand the right hand side of Eq. (14), and drop
those terms with zero expected values,
AONIZORES s oxmr i
+ myemig i
+ 1y T mi e m;
+ Mg e My o miemi} (15)

In order to get the most information possible on a per-
sample basis, the sampling is performed at a rate such
that 273, =~ 0 and y;yx = 0 for j 5~ k. Hence at the sample
points

My *Miy = BT Ting

mm = g T (16)

For some constants 8, 8’ and any particular i, §, k, . We
will assume that Eq. (16) holds at interpolated values
also. With this assumption, Eq. (15) may be rewritten in a
statistically-equivalent but simpler form:

ZENZLE) =3 5w rear i,

+ m,,,;,'mmw’,- 1" (]. + l; + ﬂ’)}

17)
Equations (13) and (17) are representative of the detec-

tion of a known Gaussian signal, {r;} embedded in
Gaussian noise. The constants 8, and 8’ are

B’=1/(%§Sf>—1 (18)

On a per-sample basis, the noise-to-signal ratio for this
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detection problem is

NSR; =B+ 8 + B8

S (19)

2\ Ty Te
w) Ty, Tx.
It is convenient to consider the detection problem as if

the interfering noise samples have unit variance. If it is so
normalized, each of the “signal” samples has energy given

by E, = 1/NSR;, or
2\2
(“") Tm ¢ sz

I\ 2
Tyi*Tys — <_> Tt T (20)

™

E, =

With the VLBI parameter estimation problem thus
transformed to one of parameter estimation for a known
signal in noise, the formulation of the Barankin bound
(Eq. 8) is directly applicable. Since the sequence of sam-
ples of the signal and noise processes at both stations are
virtually independent from sample-to-sample, we take as
the orthonormal basis for the signal set, the sequence of
sample functions themselves. We normalize so that the
interfering noise samples have unit variance, and hence
50 x; = 1, for all sample indices j. The signal projections
B;(*) are a scaled version of the r;. The number of sam-
ples, N from which the estimates of delay and doppler
are made, is large, so that central limit theorem applies,
and

S xiBi(&) Bi(¢)= N-E{B,(§)-B(¢))} (21)

Jj

Or using the normalized autocorrelation function ¢(v, *):

2\z
(:) Ta*Tse

2\:
TA\'ITA\'Z - <__—> Tm . Tsz

j_Z:ijj(i) *Bi(¢) =N (¢ — &)
(22)

Note that here ¢ denotes a vector parameter which can
include delay or doppler offsets, or both.

The G(-,

+} function for VLBI (Eq. 7) is defined by

G(&', ElilgO) = exp {R' [(#(gf — gn) — ¢(§r — Eo)
— (£ — &) + (£ — )]} (23)
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where

2\ 2
<—> Tsi* Ty,
™

9\ 2
Twi*Ty. — <;> Ts*Tse

The D matrix of Egs. (9) to (11) is defined from Eq. (23) as

R=N-

D = {dulk,2=0,--,K}
diy = exp {R[¢(O) - ¢(5c - 50) - ¢(§” - 50) + ¢($;c - 5”)]

for k, 2¢[1, K] indices of alternate é&.

0
dro=dox =R '.827[4’(5' — &) — $(& — &)e-s,
for ke[1, K]

0 0
d()o:R'a_g,a_éﬁd’(f — &)

fegri= g, (24)

Furthermore, we note that &, is presumed to be the global
maximum of ¢(+) so that the second term of d is trivially
equal to zero. If we restrict the set of alternate £, to local
maxima of ¢(*), the first term of dy, and hence dg itself,
is zero for all k. With this restriction on D, the Barankin
bound for ¢ becomes

o* > —— + N'DN, (25)

d0,0

where the subscripts 1 in the second term of Eq. (25) are
meant to imply that the zero-index row and column have
been dropped. The first term of Eq. (25) is the Cramer-
Rao Bound; the second is the nonlinear threshold term.

IV. A Very Long Baseline Interferometry
Example

The wideband quasar noise signal is processed at the
two receiving stations into a form which is suitable for
recording. This processing corresponds to constraints
on available equipment bandwidths, recording rates, data
storage capacities, etc. The basic constraint is the band-
width of the low-noise Maser amplifier, which we will
hypothesize to be 40 MHz centered at 2 or 8 GHz for
present systems. This is still too wide for any but the
fastest recorders, and is further reduced by filtering sev-
eral narrow channels from the passband which span the
full bandwidth available (bandwidth synthesis); or by

sampling the full bandwidth into a buffer memory, and
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then recording at a slower rate once that buffer is filled
(burst mode). Both sampling modes have side-lobes in the
delay-estimator which arise at roughly the reciprocal of
the spanned bandwidth (10-® sec). There are also side-
lobes in the frequency estimator at roughly the reciprocal
of the recording or sampling interval (10-2 Hz). Burst
sampling will generate additional sidelobes spaced a few
Hz away from the true frequency, but these should be
able to be removed by a priori knowledge, as should some
of the more widely spaced side lobes in time-delay.

Bandwidth synthesis systems which have been pro-
posed utilize two channels at the extremes of the avail-
able bandwidth, plus a third channel placed somewhere
between to reduce the sidelobe amplitudes. The exact
sidelobe structure is sensitive both to the position of this
third channel, and to the bandwidth of the channels. For
an overall spanned bandwidth of 40 MHz, a reasonably
tolerable side-lobe structure is achieved if the third chan-
nel is located 5 MHz from the passband center. While
this position is perhaps not optimum, it offers near
optimum side-lobe suppression which is far better than
that provided at many alternative positions, such as at,
e.g., 6 MHz. Figure 2 shows the effect of varying the
individual channel widths for a 40-MHz spanned band-
width with the third channel located at 5 MHz. The
function plotted is the aggregate autocorrelation function
for the three recorded channels, which results with opti-
mum use of all available information. The recording
bandwidths are 6 MHz, 4 MHz and 2 MHz for Figs. 2a,
9b, and 2¢, respectively. The corresponding Barankin
lower bound to delay estimate error is shown in Fig. 3,
lines B, C, and D, respectively. As could be anticipated
from the sidelobe structure of Fig. 2, the threshold per-
formance degrades seriously as the individual channel
bandwidth is narrowed, and would continue to degrade
if the recording bandwidth were reduced further. At
Estimator signal-to-noise ratios well above threshold, the
delay estimate error depends only minimally upon the
individual channel bandwidths.

Figure 3 also shows the Barankin lower bound to
the delay estimate error achieved by a full bandwidth
40-MHz Burst Mode System (line A). The autocorrelation
function is the familiar sin (x)/x. Threshold performance
of the burst mode sampling is better by about 2 to 3 dB

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-31

than that for bandwidth synthesis with 6-MHz channels,
and better by about 10 dB than that for bandwidth
synthesis with 2-MHz channels. At high SNRs, however,
the delay estimate error is 2 dB worse for burst mode
than for bandwidth synthesis.

The doppler estimator error has not been calculated
per se, but its shape can be inferred as follows: The
recording of data is approximately uniform in time over
some fixed interval. Accordingly the transform of this
interval is the sin (x)/x function and the doppler estimate
error is identical to line A of Fig. 3 with the abscissa
relabeled as appropriate: for example, if the recorded
sample occupied 40 sec, then ¢r = 10-® sec on Fig. 3,
line A is comparable to oy = 103 Hz.

V. System Implications

One can draw a variety of conclusions from Figure 3,
depending upon where and how he looks. Above thresh-
old, for example, a three-fold improvement in delay
estimate error requires roughly a 10-dB increase in esti-
mator SNR, or a hundred-fold increase in the number of
samples processed. This is a potentially expensive way to
gain accuracy. This improvement in accuracy could per-
haps be better achieved by other means, such as increas-
ing the spanned bandwidth, if possible, and operating the
system at some nominal margin above its threshold. We
would like furthermore to be able to operate with a per-
formance curve like Fig. 3A or Fig. 3B with a threshold
as low as possible to minimize the amount of data needed
to ensure above-threshold operation. Line 3B corresponds
to a recording channel bandwidth of 15 percent of the
spanned bandwidth, and for spanned bandwidths which
are significantly larger than the 40 MHz considered here,
it suggests that the use of a combined burst/bandwidth
synthesis recording is desirable, For example, it does not
appear reasonable to burst-sample a 200-MHz spanned
bandwidth with present-day equipment, but 15 percent
bandwidth channels, each 30 MHz wide, could be easily
burst-sampled and recorded. Such operation would lead
to a performance curve of the type of line B, Fig. 3, but
with the delay-estimate error in the above-threshold
region reduced five-fold by the increased spanned band-
width. ,
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Fig. 3. Delay estimate error vs. estimator SNR in dB
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